
Project Manager “Primer” for
Software Testing & Quality

Bob Galen

RGalen Consulting Group, LLC

www.rgalen.com bob@rgalen.com

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 2

Outline

1. Different Types of Testing

2. Setting Meaningful Testing Milestones

3. Risk from a Testing Perspective

4. Overview of Risk-Based Testing

5. Managing Test Automation

6. SQA Outsourcing

7. Wrap-up

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 3

Different Types of Testing

 Black vs. White Box

 Various testing efforts

 4 Schools of Testing

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 4

Types of Testing
The “Boxes”

 Writing tests with a strong view to the
internal workings of the code.

 Unit Tests & Component Tests

 Still knowing about the code, but also
considering external requirements and
functional behavior

 Integration or API Tests

 Totally driven by requirement-driven
functional behavior.

 Functional & User Acceptance Tests

White Box

Gray Box

Black Box

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 5

Various Types of Testing

 Developer-Driven
 Unit

 Automated Builds

 Smoke Tests

 API & Low Level integration

 Data integrity & object
interaction

 Early QA-Driven
 Functional Testing

 Integration Testing

 Feature Testing

 Agile – Customer Acceptance
Testing

 Exploratory Testing

 Later Cycle QA-Driven
 Functional (feature-driven)

Testing

 System Testing, end-to-end
testing

 Regression Testing

 User Acceptance Testing

 Load & Performance Testing

 Non-functional Requirement
Testing

 Security Testing

 Usage scenario Testing

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 6

Non-Functional Requirements
Quality Attributes or “ilities”

 Availability
 Efficiency
 Flexibility
 Integrity
 Interoperability
 Maintainability
 Portability
 Reliability
 Reusability
 Robustness
 Testability
 Usability

 Performance
 Security

 Non-functional requirements are usually
more challenging to test
 Clarity of the requirement
 Testing skills & effort

 Security, Performance & Load are usually
added as non-functional requirements

 Availability, Reliability, Interoperability &
Usability are frequently examined in modern
applications

 Security is becoming more and more
relevant

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 7

Context–Based
4 Schools

Context-Driven School

Emphasizes people, setting
out to find the bugs that will

be most important to
stakeholders

Factory School
Plan-Driven

Sees testing as a way to
measure progress with
emphasis on cost and
repeatable standards

Quality School
Process-Driven

Emphasizes process,
policing developers and
acting as a gatekeeper

Analytic School
Technique-Driven

Sees testing as rigorous and
technical with many

proponents in academia

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 8

Context–Based
7 Basic Principles of the Context–Driven School

1. The value of any practice depends on its context.

2. There are good practices in context, but there are no best
practices.

3. People, working together, are the most important part of any
project's context.

4. Projects unfold over time in ways that are often not predictable.

5. The product is a solution. If the problem isn't solved, the product
doesn't work.

6. Good software testing is a challenging intellectual process.

7. Only through judgment and skill, exercised cooperatively
throughout the entire project, are we able to do the right things at

the right times to effectively test our products.

http://www.context-driven-testing.com/

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 9

Setting Meaningful Testing Milestones

 Testing is iterative

 The SDLC is the primary influence point

 Key to Success: Entry & Exit Criteria

 Smoke Testing, etc.

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 10

Rational Unified Process
An “Example” of Testing Iterations

Source: http://en.wikipedia.org/wiki/Rational_Unified_Process

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 11

Within
development

iteration – unit &
acceptance

focused

Iterative passes,
moderate - heavy

rework

Single pass w/
limited rework

Test Execution

Automated unit,
smoke, and
acceptance

tests; minimal
regression

Executed but
rarely

developed till
the next release

Executed but
rarely

developed till
the next release

Test
Automation

Small scale, often
shared

environments
until later
iterations

Enterprise scale,
early on, often

shared equipment

Large scale, early
on, dedicated

equipment

Test Setup

TDD model,
planned within
development

iterations

Agile

Incremental Test
view

RUP

Traditional
System Test

view

Waterfall

Test PlanningModel

Methodology Implications for Testing

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 12

Milestones should follow the SDLC

 Team formation

 Skills readiness

 Lab preparation

 Tools configuration

 Testing preparation

 Planning

 Test case design

 Automation development

 Iterative test execution

 Manual, Exploratory, &
Automated testing

 Progress towards maturation

 Exit criteria

 Basic Recommendations –

 Manage at the activity level,
focused on testing iterations

 Manage at the Test Suite level
via pass / fail criteria

 Manage defect trending –
towards incremental goals

 Don’t micro-manage at a test
case (task) level

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 13

Coverage

 Notion of requirement traceability or coverage
 Ability to trace test case(s) back to the originating requirement(s)

 Feature coverage from a compliance and completeness
perspective

 If required, usually a 100% requirement. For example, FDA or
SOX environments

 Notion of code coverage
 More internally focused

 Branch, conditional, path, statement – raw code

 Rarely can/should achieve 100% coverage levels

 Tools capture coverage as code is exercised via testing

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 14

Entry & Exit Criteria

 Entry Criteria
 Conditions that must be met prior to QA beginning their testing

efforts

 Usually some sort of change log, content position

 Smoke Testing (manual and/or automated) is a form of entry
criteria – tied to execution / passing of focused testing

 Exit Criteria
 Conditions that must be met prior to SQA completing testing on a

specific deliverable

 Normally includes coverage (test cases run, features completed)

 Also includes quality attributes (pass rates, acceptable defect
levels)

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 15

Smoke Testing

 A set of tests that are run prior to SQA “accepting” a
release for testing

 Typically automated and “connected” to the build system

 Intended to prevent wasted effort by SQA on broken
releases (basic operations and core features)

 Focus can / should change release over release

 Programmatic form of release criteria

 Usually defined collaboratively with and owned by the
development team

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 16

Challenges from a Testing Perspective

 Coverage, execution & blocking

 Defect density & trending

 Ratio balance

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 17

Your Ally
Historical Trending

 Since testing is essentially an iterative or cyclical activity,
you can benefit by paying attention to historical trends –

 Test case design & execution rates

 Coverage attainment rates

 Raw defect rates

 Cyclical quality (maturation) rates (higher priority defects &
blocking defects)

 Regression levels

 Observing patterns – for example deterministic S-curves and
Zero Bug Bounce trends

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 18

S-Curves
Cumulative “Work” Over Time

Project
Startup

Project
Finalization

Work
Acceleration

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 19

Blocking &
Adjustment

 SQA should not be forced to plan in great detail
because…things change…daily!

 Instead, continuously adjust based upon –
 Blocking bugs

 Feature immaturity

 Blocking execution (for example: data, equipment, and other
dependencies)

 Exploration & discovery

 Priority changes

 Overall context shifting

are common and expected…

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 20

Defect Density & Trending

 You want to pay attention to defect density
 Pareto analysis determining the 80:20 risk areas

 Wrap risk management & focus around these areas

 It changes, so monitor it release over release

 And other trends, comparing
 Open vs. closed – approaching a release point?

 High priority – how is the software maturing?

 Regressions and rework times – at expected levels?

 Test plan vs. actual progress (coverage)?

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 21

Open Defect Trending

Simple Defect Trending

0

10

20

30

40

50

60

C
1
,p

1
p
2

p
3

p
4

C
2
,p

1
p
2

p
3

p
4

C
3
,p

1
p
2

C
3
_1

,p
1

p
2

p
3

C
3
_2

,p
1

p
2

1 Week Test Iterations

#
o
f
D
e
fe

c
ts

Open High-Priority Regressions

Zero Bug
Bounce

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 22

Open Defects per Functional Area
Trending – Pareto (80:20 Rule) Chart

Sample Pareto Chart

30

25

15

10 10

530

55

70
80

90
100

0

5

10

15

20

25

30

35

UI Mware Parsing SOAP Reports Help

D
e
fe

c
ts

0

20

40

60

80

100

120

Bugs

Cum %

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 23

Developer to Testers
Ratio

It turns out that ratio’s Matter!
 Developer-to-Tester

 Ensure you count ALL the
developers (Producers) then factor
in testers (Consumers)

 Types of applications really matter,
for example:
 Regulatory

 Platform & component
interoperability

 Localization

 Automation has a strong impact

 Achieve a balance that meets your
clearly defined quality goals!

Median ratio: 5 developers to 1 tester

Average ratio: 7 developers to 1 tester

Most common ratio: 3 developers to 1
tester

Minimum ratio: 30 developers to 1 tester

Maximum ratio: 1 developer to 0 testers

Developer to Tester Ratio’s – An
“Informal” Study

29 companies responded
R. Rice, 2000 QAI conference

Technology consulting firm = 8:1

Analytical CRM company = 4:1

Healthcare IT firm = 4:1

Huge software conglomerate = 1:1

Large statistical software company = 1:1

Some local examples of developer to
tester ratios

M. Eason, 2004 Local RTP, NC study

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 24

Overview of Risk-Based Testing

 Realization of coverage

 Comparing methods

 Exploratory testing

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 25

Risk–Based Testing
Background

 It starts with the realization that you can’t test everything
– ever!

100% coverage being a long held myth in software
development

 There are essentially 5 steps in most of the models
1. Decompose the application under test into areas of focus

2. Analyze the risk associated with individual areas – technical,
quality, business, schedule

3. Assign a risk level to each component

4. Plan test execution, based on your SDLC, to maximize risk
coverage

5. Reassess risk at the end of each testing cycle and adjust

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 26

Risk–Based Testing
Risk Prioritization

 Traditional - Collaborative Risk Planning Workshop
 Include stakeholders and interested parties – BA, Architects,

Developers, Testers, PM’s, Stakeholders, Management, etc.

 Prepare by reading product requirement and other artifacts

 Test team leads discussion for each suite – default intentions,
concerns or issues, questions

 Q&A

 Constituents feedback their views to –

 Business Importance, Probability of Instability, Overall Complexity,
Coverage & Timing

 Test team constructs a working view towards

 Individual suite risk handling

 Overall project risk handling

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 27

Risk–Based Testing
Test Suite – Execution Plan

Test Suites # of Test Cases

Avera
ge Size

Avera
ge

Com
plexity

Openin
g

-

Prio
rit

y

M id
dle

Gam
e

Prio
rit

y

End
Game

Prio
rit

y

Desig
n

Tim
e

Setu
p

Tim
e

Executio
n

Tim
e

In
iti

al Release

C1 C2 C3 Fin
al Release

Accept - Smoke 25 S M High High Med 4 1 2 3 2 2 1 2
Func - Database Meta-data Integrity 45 M H Low Med High 5 3 3 4 2 2 3 3
Func - Mware, Business rules 75 L H Low High High 10 2 5 3 5 5 5 5
Func - Real-time data 30 M M High Low High 5 1 2 3 1 1 2 2
Func - Intelligent Searching 45 L M High High High 5 5 3 8 3 3 3 3
Func - Area 3 25 S T Med Med Med 5 1 2 2 1 1 1 2
Func - Area 4 40 S T Med Med Med 5 1 2 2 1 1 1 2
Func - Area 5 45 S T Med Med Med 5 1 2 2 1 1 1 2
Func - Common UI Features 150 S T Med Med High 15 2 10 7 5 5 10 10
Comp - Operating systems 30 S T Low Low High 2 3 3 4 1 1 3 3
Comp - Browsers & databases 130 S M Low Low High 3 10 5 11 1 1 5 5
Perf - 5 sources, 5 user scenarios 25 L H Low Med High 15 3 5 4 3 3 5 5
Defect Verifications N/A N/A N/A Low High Low 5 1 5 2 5 5 1 5
Regression N/A N/A N/A High Low High 0 1 15 16 4 4 15 15
Automation N/A N/A N/A Low Low Low 10 1 5 2 1 1 1 5
Total Test Cases 665.0 Totals: 94 36 69
Average / time per test case 0.30 Total Time 74 35 35 58 69
Test team members 3.5 Team/Person Days 21 10 10 16 20

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 28

pure scripted freestyle exploratory

chartersvague scripts

fragmentary
test cases
(scenarios) roles

To know where a test falls on this scale, ask
yourself: “to what extent am I in control of the
test, and from where did the idea originate?”

Exploratory Testing
Scripted vs. Exploratory Continuum

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 29

Exploratory Testing
Session Strategy

 Exploratory Testing proceeds in a series of
interconnected 60-120 minute sessions that are focused
on a specific testing project (application)

 Planning the project encompasses establishing a set of
time-boxed session charters and defined roles

 Establishing roles and focus areas for the sessions or
groups of sessions

 Establishing the session execution dynamics
 Starting, Stopping, Re-Chartering, Reporting (logging)

 Reporting progress to stakeholders & re-establishing the
overall test strategy / charter

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 30

Risk–Based Testing
Risk Scheduling & Tracking

 Once you have your overall risk assessment and
cyclical feedback, you need to create a plan & schedule
that reflects the tempo and cyclical testing requirements
of your SDLC

 Iterative or agile methodologies require more testing
cycles
 They also increase the complexity of your planning to sensibly

handle rework (re-testing, regression, integration, and repair
verifications)

 Ensure you don’t over-test, by testing too soon or too often

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 31

Risk–Based Testing
Methods Comparison

N/AN/ATest Steps

Test IdeasTest Ideas,
heuristics-driven

testing

Test Cases

Team
Collaboration &

Execution

Ideas “chunked”
into Test

Objectives

Charter-driven
sessions

Test Suites

Test Usage
Scenarios

N/AN/A

Management &
Tracking level

Just-In-Time

Testing

Exploratory
Testing

Risk BasedTypes of
Context-Based

Testing

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 32

Managing Test Automation

 First of all, it’s another development project!
 With all that implies: requirements, project management, risks,

internal & external dependencies, bugs, etc.

 Notions of architecture and design; heavy collaboration with the
development team

 Now you have two, parallel projects to coordinate

 Beyond start-up costs, there are –
 Training, consulting, and skill-set upgrade costs

 Tool costs

 Maintenance burden & associated costs

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 33

Test Automation
Mitigating Risk

 Automation is often viewed as an automatic risk
mitigation strategy. For example –
 You simply run it as a regression safety net of sorts

 Continuous (7x24) execution

 While automation IS a viable strategy and required to
truly achieve your speed goals, be careful to –
 Acquire a proper environment and toolset

 Understand your maintenance and support needs & costs

 Realize your current skill set and expertise needs

 Understand the connection to your product SDLC and the tension
between it and your automation efforts

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 34

Risk–Based Testing
Typical Automation SDLC – “Skew”

Application release
v2.0 - Construction

Application release
v1.1 - Construction

v1.0 Feature
Testing &

Regression

v1.1 Automation
Development

v1.1 Feature
Testing &

Regression

v1.0 Automation
Development

Application release
v1.0 - Construction

v2.0 Feature
Testing &

Regression

Serializing automation takes extra human & equipment resources…
Driving up cost!!!

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 35

Test Automation
Skill set

 Usually team struggle in acquiring
automation skills –

 Architecture & Design

 Development

 Toolset capabilities

 So they adopt a tiered model that
aligns with resource skill-sets
capabilities and automation
construction effort balance

 Tools & Infrastructure are
centralized; while test case design
& execution are often distributed

Automation
Execution

Test Case
Development

Infrastructure
Development

Tool
Support

Resource Levels

A
u

to
m

a
tio

n
S

k
ill-s

e
t

In
c
re

a
s
e

s

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 36

Testing “Food” Pyramids
Another View to Maintenance

Features, Regression &
Scenario

Unit

Functional &
Integration

Agile Pyramid

Automated developer
tests, under the API’s, unit

tests

Functional, Integration &
Acceptance

Regression &
Scenario

Traditional Pyramid

T
es

te
r…

D
ev

el
op

er
F
oc

us
ed

B
rittleness

D
eveloper…

T
ester

F
ocusedB

rit
tle

ne
ss

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 37

SQA Outsourcing

 Many firms are tempted to outsource their testing. The
rational follows –
 It’s not a core competency nor does it generate IP

 It’s attractive from a cost perspective

 Vendors seem to be at high CMMi levels and competent

 A view towards testing as a commodity

 I agree that SQA is an attractive outsource target AND it
should be part of your thinking…

 But,

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 38

Outsourcing
Candidate Selection

 Realize that not every application is a good candidate

 Good candidates:
 Stable interfaces

 Legacy products

 Non-core products, low IP

 Bad candidates:
 New, evolving products & interfaces

 High IP content

 You flagship products

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 39

Outsourcing
Culture & Capabilities

 Believe it or not, all cultures aren’t created equal when it
comes to testing

 Some issues:
 Getting open & honest feedback on product quality

 Raising issues for resolution

 Tendencies for by-rote testing, starting at 1 and working to n

 Domain experience gaps, attrition rates, and (re)training costs

 Connection challenges between disparate process models (PM,
SDLC, and Quality)

 Accountability and motivation

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 40

Outsourcing
Sweet Spots

 Increasing bandwidth, speed, and coverage
 Executing manual testing and increasing coverage

 Regression testing

 Legacy product coverage; product retirement risk mitigation

 Automation execution

 Types of testing requiring 7x24 coverage

 Technology & process sharing – improving local
capabilities

 Raising your overall capacity bar

 Risk mitigation (holiday coverage, bench strength)

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 41

Wrap-up
Largest Challenges facing PM’s & Test Teams

 Schedule compression
 We’re behind 4 weeks in development – so we’ll make it up in

testing

 Trivialization of testing effort
 Why can’t we get the Boy Scouts to help us test?

 Thoughtless compromises
 See “Schedule compression”

 Agile testing
 Quality is entirely a development responsibility; i.e., we don’t

need no stinkin’ testers

 Traditional Mindsets
 100% testing; Zero defects; Quality & Process Gatekeeper

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 42

Questions?

Thank you!

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 43

References & Backup

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 44

Basic Agile Principles

 Deliver working code in time boxed, small iterations

 Continuous integration, automated unit & acceptance
testing

 Embrace change; lower the Cost of Change

 Customer collaboration; focus on delivering value &
business acceptance

 Deliver just what’s needed and no more

 Small teams; conversation & collaboration

 Trust teams judgment & capabilities

 Reference the Agile Manifesto

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 45

Agile Tester Profile
Disruptive to Traditional Views

Traditional Views

 Static Requirements

 Regression Testing

 Programming is for Programmers

 Detailed Test Planning

 Change Control

 Dedicated Phases for Testing

 Being in a Position of Authority or
Gatekeeper

 Value by Testing

Agile Views

 Emerging requirements
 Iteration testing, continuous

integration
 And for testers, increased

technical skills, pairing
 Exploratory, collaborative,

experience & trust based

 Embrace change
 Parallel work, small increments
 Quality as a team

 Value by delivering to customers
and adding your own within the
team!

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 46

Testing References

 Black, Rex, “Managing the Testing Process – 2’nd Edition”, Wiley,
(2002)

 Black, Rex, “Critical Testing Processes: Plan, Prepare, Perform,
Perfect”, Addison Wesley, (2004)

 Copeland, Lee, A Practitioner’s Guide to Software Test Design”,
Arctech House, (2004)

 Crispin, Lisa and House, Tip, “Testing Extreme Programming”,
Addison Wesley, (2002)

 Dustin, Elfriede, “Effective Software Testing: 50 Specific Ways to
Improve Your Testing”, Addison Wesley, (2003)

 Galen, Bob “Software Endgames – Controlling Mastering the Software
Project Endgame”, Dorset House Publishing, (late 2003 – early 2004)

 Kaner, Cem, Bach, James, and Pettichord, Bret, “Lessons Learned in
Software Testing – A Context Driven Approach”, Wiley, (2002)

 Kaner, Cem, Falk, Jack, and Nguyen, Hung Quoc, “Testing Computer
Software”, Wiley, (1999)

 Petschenik, Nathan, “System Testing with an Attitude: An Approach
That Nurtures Front-Loaded Software Quality”, Dorset House, (2005)

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 47

Web References

 Software Quality Engineering – www.sqe.com, and their portal
www.stickyminds.com

 Software Testing & Performance magazine (free) – www.stpmag.com

 Florida Institute of Technology, Testing education site (Cem Kaner)–
www.testingeducation.org

 Testing Blog site – www.testingreflections.com

 Elisabeth Hendrickson site – www.testobsessed.com

 Test Driven Development – www.testdriven.com

 Agile Journal – www.agilejournal.com

 CM Crossroads – www.cmcrossroads.com

 Association for Software Testing (Join!!!) -
http://www.associationforsoftwaretesting.org/

v1.0 -- March 2007
RGalen Consulting Group, LLC

Copyright © 2007 48

Contact Info

Robert Galen
RGalen Consulting Group, L.L.C.

PO Box 865, Cary, NC 27512
919-272-0719

www.rgalen.com
bob@rgalen.com

Software Endgames: Eliminating Defects,
Controlling Change, and the Countdown to
On-Time Delivery published by Dorset House
in Spring 2005. www.rgalen.com for order
info, misc. related presentations, and papers.

